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ABSTRACT

Self Assembled (SA) thin films and Langmuir - Blodgett (LB) thin films are
emerging technologies for the development of chemical and bio-chemical sensors,
electrooptic films, second harmonic generators (frequency doublers), templates for
biomimetic growth etc..  However, the growth of these technologies is dependent on the
development of our understanding and control of the molecular arrangement of these
films.  This is not trivial since SA and LB films are essentially two-dimensional
monolayer structures.  One of the goals of this project was to extend Sandia's
characterization techniques and molecular modeling capabilities for these complex two-
dimensional geometries with the objective of improving our control of the fabrication of
these structures for specific applications.  Achieving this requires understanding both the
structure throughout the thickness of the films and the in-plane lattice of the amphiphilic
molecules.  To meet these objectives we used atomic force microscopy (AFM), X-ray
reflectivity, and molecular modeling.

While developing these capabilities, three different materials systems were
fabricated and characterized: 1)  Self Assembled Monolayers (SAMs) of
octadecyltrichlorosilane (OTS) and LB films of arachidic acid on silicon wafers; 2)
SAMs on PZT substrates; and 3) electrochemical deposition of CdS on LB film
templates.  The SAMs and LB films deposited on silicon were characterized using
characterized using x-ray reflectivity.  This technique proved to be useful for
understanding the molecularly layered structure in the direction perpendicular to the
substrate (see Appendix C).  The study of SAMs on PZT was a novel study.  The self
assembly of OTS has been demonstrated and studied on silica surfaces however, in this
work we demonstrated SAM formation on PZT, determined the mechanism for SAM
formation on PZT, and demonstrated that SAMs on PZT can modify the surface
behavior.  These results are discussed in detail in Appendix A and imply that SAMs may
be useful for micropatterning of PZT and development of next generation optics-based
microelectronics.  In Appendix B there is a detailed discussion about using LB films and
electrochemistry to create template assisted growth of thin films of CdS.  In this work
atomic force microscopy was used to characterized the in-plane structure of LB films and
to study how the chemical functionality of LB films can effect the growth of CdS.
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SUMMARY

Self assembled and Langmuir - Blodgett films have been the focus of intense
investigation in recent years.  This results from the plethora of possible applications for
these unique two-dimensional structures.  Applications include chemical and bio-
chemical sensors, electrooptic films, second harmonic generators (frequency doublers),
and templates for biomimetic growth.  However,  wide spread use of these films is
limited because characterization and control of their two-dimensional geometries has
proven evasive.  The goal of this research project was to develop a capability for the
molecular level characterization, modeling and fabrication of SA and LB films for
possible applications in the previously mentioned areas.  A farther term objective is to
use these new capabilities to improve our control of the fabrication of thin films for
specific applications.

The project was completed within three different materials systems and is
discussed in detail in Appendices A-C.  The project was successful in developing
capabilities for fabrication and characterization of self assembled thin film structures in
general.  However, extensive modeling of the structures proved evasive and is not
discussed in detail.  The most interesting characterization was completed using atomic
force microscopy (AFM) and x-ray reflectivity.  The AFM can be used to study local
features rather than relying on data averaged over large areas to provide information of
molecular ordering.  This allows the study of the in-plane structure such as local
ordering, defect structures, as well as grain boundaries.  X-ray reflectivity can provide
detailed structural information throughout the thickness of these films.

Appendix A discusses the formation, characterization, and utility of OTS SAMs
on PZT substrates.  This is a novel development.  Appendix B discusses the fabrication
and characterization of CdS thin films that were formed by using LB film templated (i.e.,
biomimetic) growth in the presence of electric fields.  This is another novel development.
Finally, the utility of x-ray reflectivity for studying the out-of-plane structure of SAMs
and LB films is demonstrated in Appendix C for films deposited on silicon wafers.

In general, the SAMs studied were octadecyltrichlorosilane on silica and
hexadecyl mercaptan on gold.  The LB films were cadmium arachidate.  The following
pages highlight the fabrication procedures for the LB films.  More detail is provided in
the appendices.



3

Table of Contents

Title 1
Abstract 1
Summary 2
Table of Contents 3

Lamgmuir-Blodgett Film Fabrication 4

Appendix A: Formation and Stability of Self-Assembled Monolayers A - 1
on Thin Films of Lead Zirconate Titanate (PZT)

Appendix B: Template-Assisted Electrochemical Deposition of B - 1
Ultrathin Films of Cadmium Sulfide

Appendix C: Characterization of Langmuir - Blodgett Films C - 1
Using X-ray Reflectivity



4

LANGMUIR - BLODGETT FILM FABRICATION

Langmuir Blodgett Films are Highly Langmuir Blodgett Films are Highly 
Ordered FilmsOrdered Films

• Langmuir-Blodgett films are monolayers or 
multilayers transferred from the water-air 
interface onto a solid substrate
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LB films Deposited as Substrate Passes LB films Deposited as Substrate Passes 
Air-water InterfaceAir-water Interface

• Hydrophobic substrates begin deposition on first downward 
pass (Hydrophilic substrates start on first upward pass)

• Hydrophobic tail groups contact substrate and are deposited
• (With hydrophilic substrates, head groups are deposited
• Multilayers are built up “head-to-head and tail-to-tail”
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Arachidic Acid Used as Arachidic Acid Used as 
Deposition MaterialDeposition Material

• Is an amphiphilic molecule
• Will form ideal LB films

C O

OH

Arachidic Acid

CH3-(CH2)18-COOH

4



6

Subphase pH and Cadmium Subphase pH and Cadmium 
Concentration Control Rigidity of LB FilmConcentration Control Rigidity of LB Film

• Higher pH and 
concentration of 
Cd+2 ions in 
subphase form 
more rigid 
monolayers

• Less acidic pH 
promotes 
dissociation of 
carboxylic 
group
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Substrates Treated to Form Substrates Treated to Form 
Hydrophobic SurfaceHydrophobic Surface

• Silicon wafers and PZT substrates treated with 
Octadecyltrichlorosilane(OTS), 

• Methyl terminated chain makes substrate 
surface hydrophobic

• Hexadecyl Mercaptan, HS - (CH  2)15 - CH3, 
reacts in a similar way with gold coated wafers

6



7

• Four layer films have the methyl group 
outward

•

•
•

•
• Five layer films have carboxylic acid group 

outward

Chemical Functionality of 4 and 5 Chemical Functionality of 4 and 5 
layer LB Filmslayer LB Films

= -CH3

= -COO-
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Conditions Used for Biomimetic Conditions Used for Biomimetic 
TemplatingTemplating

• Biomimetic template 
processing imitates the 
deposition of 
inorganics on an 
organic layer

• Previous trials led to 
the following 
conditions:

– pH : 6.5
– [Cd+2] : 5 x 10-4M

Langmuir Blodgett film

=Sulfur 

=Cd++
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APPENDIX  B

Template-Assisted Electrochemical Deposition of
Ultrathin Films of Cadmium Sulfide

Joseph Cesarano III,†* Xiang Xu,‡  Eileen Burch,† and Gabriel P. Lopez‡*

†Dept. 1831, Sandia National Laboratories, Albuquerque, NM and
‡Dept. of Chemical & Nuclear Engineering, University of New Mexico, Albuquerque, NM

Abstract

Uniform thin films of cadmium sulfide were prepared by template-assisted
electrochemical deposition on gold electrodes covered with Langmuir-Blodgett (LB) films.
An electrolytic cell was used for the production of low concentrations of S- to effect
heterogeneous crystallization on LB films, while preventing homogeneous precipitation.
3,4 and 5 layer LB films of cadmium arachidate were investigated. Charcterization of
deposited films by optical microscopy, atomic force microscopy and energy dispersive X-
ray analysis of film composition indicated that a variety of different types of CdS films can
be produced depending on the type of LB film used, the electrode at which template-
assisted deposition is carried out, the magnitude and frequency of alternating potentials
used, and the deposition time used. In general, hydrophilic organic films that present
cadmium carboxylate groups to the deposition surface (i.e., 3 and 5 layer LB films)
supported crystallization of CdS, while those that present hydrophobic, methyl groups (i.e.,
4 layer LB films and self-assembled monolayers of alkanethiolates on gold) did not. The
best methods for the rapid deposition of conformal, ultrathin films (< 100 nm) of CdS used
highly-ordered 5 layer LB films at grounded electrodes. The data presented suggest that
templating with LB films, when used together with electrochemical deposition, has
potential for the convenient production of oriented crystalline thin films of cadmium
sulfide and similar materials.

1. Introduction

Thin, conformal, crystalline films of cadmium sulfide (CdS), a II-IV semiconductor
compound, are of interest as functional components in a variety of opto-electronic devices
such as solid state lasers and detectors,[1] solar cells,[2,3,4] and optical memories.[2]
Methods for generating these films have included chemical vapor deposition,[5] plasma
sputtering,[6] electrodeposition,[7] and precipitation.[2,3,4] Techniques for preparing films
based on heterogeneous crystallization from liquid solutions have several potential
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advantages over vapor phase deposition techniques including the ability to form crystalline
films at low temperature over large area substrates. The ability of organic functional
groups to facilitate and mediate heterogeneous nucleation from aqueous solutions at solid
substrate [8,9] also has the potential to enhance uniform nucleation (crystallite type,
orientation and distribution) of CdS and thus lead to superior performance of thin films in
device applications. For example, Langmuir-Blodgett (LB) films have been investigated
extensively for the controlled nucleation of CdS and have been demonstrated to be useful
for the formation of nanoparticles of CdS. One particularly effective methodology for the
formation of planar arrays of Q-state particles of CdS has been the exposure of LB films
comprised of cadmium arachidate layers to gaseous H2S.[10,11,12]

We have examined several methods for template-directed heterogeneous
crystallization of CdS and present here a report of preliminary work on a new technique
that has produced uniform thin films of CdS through relatively short deposition times. The
technique is an extension of that described by Fatas et al. [7] for the in situ generation of
low concentrations of Cd2+ and S2- by alternating current electrolysis and the subsequent
formation of thin CdS films from these precursors. We have examined the effectiveness of
several schemes for improving the quality of thin films produced by this technique by the
use of template-directed nucleation at the surface of various types of LB films. LB films
were prepared by several methods by dipping of gold-coated silicon wafers that had been
rendered hydrophobic by the formation of self-assembled monolayers (SAMs) by reaction
of the gold surface with HS(CH2)15CH3.[13,14] The primary characterization techniques

we have employed thus far in our studies (atomic force microscopy, optical microscopy
and energy dispersive X-ray analysis of film composition) suggest that when combined
with in situ  electrochemical generation of ionic precursors for CdS, organic template-
assisted heterogeneous precipitation of CdS at electrode surfaces is a simple, quick method
of generating thin films of CdS in which deposition is restricted primarily to areas of the
electrode surface modified with organic template moieties.

2. Experimental

2.1. Materials
Chemicals used were arachidic acid (Aldrich Chemical Co., Milwaukee WI),

hexadecyl mercaptan (Sigma, St. Louis MO), cadmium chloride (Aldrich), sodium
bicarbonate (Fisher, Pittsburgh PA), sodium chloride (J.T. Baker, Phillipsburg NJ), sodium
thiosulfate 5-hydrate (J.T. Baker), ammonium sulfate (J.T. Baker), and cadmium sulfate
(J.T. Baker). All chemicals were used as received. Silicon wafers (100) (MEMC Electronic
Materials Inc., Malaysia) were used as substrates for the gold films. Gold films (600 to
1000 Å) were deposited by thermal evaporation of gold (99.999%, Academy Precision
Materials, Albuquerque NM) under vacuum onto silicon wafers that had previously been
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coated with an adhesion promoter (50 Å of chromium). Samples for use in LB film
deposition were treated with dilute ethanolic solutions (1 mM) of hexadecyl mercaptan to
form a hydrophobic self-assembled monolayer. A platinum film (~1000 Å) on a silicon
wafer was used as a counter electrode in electrochemical generation of CdS precursors.

2.2. Langmuir-Blodgett Films
The Langmuir-Blodgett films of cadmium arachidate were deposited from a Nima

2011 Langmuir trough. For the 3-layer and 4-layer LB films, the subphase was prepared by
adding cadmium chloride to deionized water (18.2 MΩ/cm) such that the final
concentration of cadmium was 1×10-4 M.  The pH of the subphase thus prepared was 5.5
and was not further adjusted. To obtain more uniform templating surfaces (see Results and
Discussion), 5-layer LB films were also investigated. For 5 layer LB films, the subphase
cadmium concentration was 2.5×10-4 M and the pH of the subphase was adjusted to 6.5-7.0
by addition of 0.1M NaHCO3 solution. For all depositions, the barrier speed was set to 50

cm2/min for compression and the deposition pressure was 30mN/m. The upward and
downward dipping speeds of the hydrophobic substrate were 1.6mm/min.

LB films comprised of 3, 4 and 5 layers of Cd-arachidate were investigated. The 4-
layer LB film had a hydrophobic outer surface and was transferred from the LB trough to
the deposition solution directly. The 3 and 5 layer LB films had hydrophilic surfaces and
thus were not stable when exposed to air.[13]  We therefore transferred the substrate under
water (in a small beaker) from the LB trough to the deposition solution.

2.3. Deposition of Cadmium Sulfide
CdS deposition solutions were made according to the method of Fatas, et al.

Solutions A and B were mixed in a 1:3 ratio by volume.[7] Solution A consisted of 0.01 M
CdSO4 and 0.17 M (NH4)2SO4 in deionized water and solution B consisted of 0.35 M
Na2S2O3 and 0.75M NaCl in deionized water. Each solution was stirred for approximately

5-10 minutes until the solids were completely dissolved. CdS deposition solutions were
prepared by combining the two solutions A and B and stirring for at least 10 minutes.
When solution B was mixed with solution A, the S2O32- ions produced S by the

disproportionation reaction:[7]

                                                          S2O32- ⇔  S + SO32-

During the film deposition under reducing potentials, S was reduced to S2- by the following
reaction:

                                                              S + 2e- → S2-
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A potentiostat (EG&G, Princeton Applied Research Model 173) was used to produce
alternating positive and negative square wave potentials on either the electrode coated with
the LB film or on the uncoated electrode relative to a ground electrode. The reference
electrode was combined with the counter electrode from the potentiostat to form the
“charged” electrode which was subjected to the voltage cycles relative to the working
(“ground”) electrode.  For all depositions, the same solution concentrations were used (as
described above) and the duration in the voltage cycle of the positive voltage was 2 s, while
that of the negative voltage was 1 s. Several potentials (positive and negative) and
deposition times were examined. The optimized deposition conditions are reported herein.

For the depositions onto 3- and 4-layer LB films, the ground electrode was a bare
platinum film, while the charged electrode was the gold film covered with the SAM and the
LB film. In these depositions reduction of S to S2- thus occurred at the gold electrode
(presumably at defect sites in the SAM covering the electrode).  For the deposition onto the
5 layer LB film, the electrodes were reversed and the bare Pt film was used as the charged
electrode and the gold film coated with the LB film was the ground electrode. In this case,
the reduction of sulfur occurred at the bare platinum electrode and thus may have resulted
in an increased concentration of S2- relative to the depositions on 3 and 4 layer LB films.

2.4. Analysis of CdS Films
The CdS films were examined with an atomic force microscope from Digital

Instruments Inc. (model: Nanoscope II). Direct contact imaging was done both in height
mode and in force mode, and both types of images are presented herein. In general, height
mode images reveal information on the vertical topography of the surface of the films and
was used herein to estimate the thickness of conformal films, while force mode provides
sharper images of features on the surface of the films and was used in high resolution
imaging.[15] For imaging at low magnifications, the scanning speed was 2.48 Hz. No data
filtering was used during scanning. The integral, proportional, and 2D gains were tuned to
the highest possible values for the height mode, but the lowest possible values for the force
mode.[15]

At high magnification, the AFM was used to image the crystalline lattice of the
deposited CdS. For these experiments, the AFM was calibrated versus a standard mica
sheet. To minimize thermal and mechanical drifts of the microscope, the scanning was
performed for at least two hours before taking the image and scanning was conducted at a
high speed (39.06 Hz) and on a relatively large area (32x32 nm2). The force mode was used
and during data collection the input, high pass, and low pass filters were off. To obtain the
high resolution image of the crystalline lattice of CdS (Figure 4B), the raw data (Figure 4A)
was subjected to a 2D Fourier transform and principal wave numbers thus obtained were
selected and used to perform an inverse 2D Fourier transform to result in the filtered image
of the crystalline lattice.



B - 5

The CdS films were also examined by optical video microscopy using a Nikon
Optiphot 66 and image analysis system. Films were characterized using energy dispersive
X-ray analysis (EDAX) using an AMRAY 1500 scanning electron microscope.

3. Results and Discussion

We examined a variety of deposition conditions and configurations and present
below a synopsis of the results from four different types of deposition experiments that
demonstrate the utility of organic templates in influencing CdS film formation during
electrodeposition. Table 1 lists the experimental codes and conditions for the four different
types of depositions we will discuss below. Deposition conditions varied in the nature of the
deposition surface examined, in deposition time, and in the magnitude of the alternating
voltage used. For each deposition surface (e.g., organic template vs. noninteracting
functional group), the deposition conditions for the experiments presented were those found
by trial and error optimization to give rise to rapid deposition (when deposition occurred at
all) of CdS films. Figure 1 shows schematic diagrams of the electrodeposition cells used in
the various deposition experiments.

Table 1: Summary of the experimental conditions for the four types of electrochemical
depositions.

Experimental Codes BARE-Au 3-LB 4-LB 5-LB

Deposition
Surface Plain Au

Cd-carboxylate
(3 layer LB film)

Methyl
(4 layer LB film)

Cd-carboxylate
(5 layer LB film)

Deposition Time 1 minute 1 minute 5 minutes 5 minutes

Voltage Cycles 1V,2s / -1V,1s 1V,2s / -1V,1s 1.75V,2s /
-1.75V,1s

2V,2s / -2V,1s

Electrode used for
CdS Deposition

Charged Charged Charged Ground

Reducing Electrode
for S Plain Au Au with SAM Au with SAM Plain Pt

Results Loose particles
Layered single
crystallites with
crystalline
surfaces

No deposition on
LB film

Homogeneous
conformal thin
film
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A
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Line

LB Film
(3 or 4 layers)

SAMAu PtS2- Cd2+

±

Solution
Line

5 Layer
LB Film

SAM AuPt S2- Cd2+ CdS
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Figure 1:  Schematic diagram of the electrochemical deposition cells investigated. In all
depositions, the left electrode (referred to as the charged electrode) was subjected to an
alternating (square wave) potential cycle relative to the ground electrode (right) to effect
the deposition (see Table 1 for voltage magnitudes and durations and the total deposition
times). A.  Deposition cell used for the BARE-AU, 3-LB, and 4-LB experiments. For the
BARE-AU experiment, no SAM or LB film was present on the left electrode. For the 3 -
LB experiments, a 3 layer LB film, terminated with cadmium carboxylate groups, was
deposited on a portion of the left gold electrode, whose entire surface had been subjected
to modification by formation of a SAM of hexadecane thiolate. For the 4-LB
experiments, a 4 layer LB film, terminated with methyl groups, was deposited on the
SAM-modified gold electrode. B.  Deposition cell used for the 5-LB experiments. For
these experiments, the gold film was used as the right (ground) electrode. The ground
electrode was modified first by formation of a SAM, and then by formation of a 5 layer
LB film, terminated in cadmium carboxylate groups, on a portion of the electrode surface.
Note that in all cases, other ionic species (see Experimental section) were also present in
the deposition solution.



B - 7

3.1. Electrodeposition of CdS
Initial experiments focused on examining CdS films formed in a deposition cell

similar to that used by Fatas et al.[7] We used alternating voltage cycles, and deposition
times that had previously been shown by cyclic voltammetry to be sufficient for the
electrolytic formation of low concentrations of S2-.[7] The basic setup for these depositions
(referred to as BARE-AU), which were performed on a bare gold electrode (i.e., not
modified with a SAM or an LB film) is indicated in Table 1 and in Figure 1A.

Figure 2 shows an optical micrograph of the material deposited in the BARE-AU
experiment. After 1 min, sparse amounts of material were observed to deposit on the bare
gold electrode. Deposition was restricted primarily to the surface of the charged electrode,
suggesting a deposition mechanism influenced by the electrochemical nature of the
deposition cell. Deposited material exhibited uneven coverage of the gold surface, and
when removed from solution and dryed, exhibited poor adhesion to the electrode surface.
(Particles were removable from the surface by light blowing.) In the remainder of
experiments, we attempted to identify deposition conditions that took advantage of the
biomimetic, template-assisting qualities of carboxylate-terminated LB films for producing
deposited films with superior qualities (conformal coverage, crystallinity, adhesion).[8,9]

3.2. Template-Assisted Electrochemical Deposition of Crystalline CdS
The first template-assisted depositions investigated (referred to as 3-LB) were ones

in which the gold film used as the charged electrode was modified first by the reaction of
the gold with HS(CH2)15CH3 to form a hydrophobic SAM, and then by forming a three-

layer LB film of cadmium arachidate on a portion of the electrode. This procedure resulted
in a surface of exposed cadmium carboxylate groups for use as templates for nucleation of
CdS (see Figure 1A). Electrochemical deposition at this modified electrode was then
performed under conditions (voltage cycles, duration) similar to those used in the BARE-
AU deposition.

Figures 3A and 3B show optical and atomic force micrographs, respectively, of
CdS deposited under the 3-LB conditions at the boundary region of the electrode between
areas that were, and were not, modified with the three-layer LB film. These micrographs
show that deposited material was restricted primarily to the surface of the LB film and that
this material consisted of roughly evenly spaced clusters that were ~ 1 µm in lateral
dimension. Analysis of this sample by energy dispersive X-ray analysis (EDAX) suggested
that the material formed on the LB film was composed of cadmium and sulfur. Elements
(Na, Cl, O, N) of other ions present in the deposition solution were not detected. No
cadmium or sulfur was detected on the surface of the SAM. The CdS formed on the
surface of the LB film exhibited better adhesion than that produced from the BARE-AU
deposition, and in general the deposition rate was higher for the template assisted
deposition than for the BARE-AU deposition. These results suggest a template-mediated
deposition mechanism on the surface of the LB film.
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100 µm

Figure 2.  An optical micrograph of material deposited by electrochemical deposition.
No organic template was present on the deposition surface. See Table 1 for experimental
conditions (BARE-AU).

Figure 3C is an atomic force micrograph of a typical single particle of CdS formed
by the 3-LB depositions. The micrograph shows that the particles formed were layered in
structure and suggest that the particles were crystalline. This was later confirmed by high
resolution AFM (see Figure 4 below). AFM imaging in height mode (micrograph not
shown) suggested an average crystallite thickness of ~30 nm for this sample and that the
average single layer thickness was 7Å. It is interesting to note that the average crystallite
thickness (30 nm) and the layer thickness (7Å) suggest that ~40 layers were deposited in
each crystallite of CdS. This number of layers is approximately equal to twice the number
of voltage cycles performed during the 1 min deposition. This result may suggest an
influence of the electric field created during the voltage cycling on the deposition
mechanism. We have no additional data to support this possibility at this time, however,
but we plan to continue investigation of the deposition mechanism.

At this point it is important to note that, although deposition under the 3-LB
experimental conditions was repeated carefully several times, the resultant films were
highly variable (i.e., exhibited wide differences in deposition amount). When substantial
material was indeed deposited, the micrographs shown in Figure 3 (and in Figures 4 and 5
below) are typical of the crystalline structures obtained. The high degree of variability in
the results obtained for the 3-LB depositions may have been due to one or more of several
factors, including variability in the number or type of defects present either in the SAM
(the presumed loci for electrochemical reduction of S to S-2) or in the LB film. In
subsequent experiments, (e.g., for the 5-LB depositions), we took measures to avoid the
presence of such defects in the LB film (see below).
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Figure 3.  Optical and atomic
force micrographs of CdS
deposited by template-
assisted electrochemical
deposition onto a 3 layer LB
film. The carboxylate groups
terminating the LB film (i.e.,
exposed at the LB film-water
interface) act as templates
that mediate the CdS
nucleation. See Table 1 for
deposition conditions (3-LB).
A. Optical micrograph of a
region showing CdS
deposited on LB film-
modified areas of the sample
and SAM-modified areas of
the sample. CdS deposition
was generally restricted to
the surface of the LB film. B.
An atomic force micrograph
(force mode imaging) of a
region similar to that showed
in Fig. 3A. C. An atomic
force micrograph (force
mode imaging, higher
magnification than 3B) of an
individual, layered crystallite
of CdS formed on the 3 layer
LB film. The background
roughness observed is
probably at least partially due
to the structure of the surface
of the gold electrode.
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Figure 4 shows a high resolution atomic force micrograph of the crystalline lattice
on the surface of a typical crystallite formed in the 3-LB depositions. Fig. 4A presents the
raw data (force mode) obtained through the high resolution imaging and Fig. 4B presents
the image of the crystalline surface after the raw data was subjected to a Fourier transform
filtering protocol.[15] When taken together with the results of the elemental analysis
performed, the images obtained by high resolution AFM suggest that the deposited
material is indeed crystalline CdS and that the crystals are oriented with a centered
rectangular crystalline face parallel to the surface of the LB film. The centered rectangular
lattice observed (4.67 X 7.16Å) is similar to that previously published for the (110)
crystalline face of the greenockite polymorph of CdS (4.14 x 7.17Å).[16] This data
suggests that the template-assisted deposition conditions may be capable of producing
uniformly crystalline thin films of CdS, and that the crystalline phase obtained by
template-assisted electrochemical deposition may be slightly different from naturally-
occuring phases.

Although the crystallite imaged in Figure 3B was typical of those observed for the
3-LB depositions, other layered and non-layered structures were also observed. Figures 5A
and 5B show atomic force micrographs of another type of layered crystallite produced in
the 3-LB depositions. In these crystalline structures, the primary layered structure appears
not to be parallel to the electrode surface. Comparison of Figure 5A, acquired from the
structure initially, to Figure 5B, taken after repeated scanning of the sample, shows the
ability of the AFM tip to remove successive layers of the stratified material.

While it may be that the material imaged in Figs. 5A and 5B, has the same
crystallographic structure as the CdS imaged in Figures 3 and 4, the material imaged in
Fig. 5C appears to be a different form of CdS, or perhaps another material entirely. The
material shown  in Fig. 5C constituted the most conspicuous minor component of the
material deposited in the 3-LB depositions. Features with this sort of morphology, which
were typically much larger than the major component shown in previous figures (compare
scales in 5C with 5A and 5B), constituted less than one percent of the deposited structures.
These structures showed no clear layered morphology, and we were unable to obtain a
crystalline lattice upon imaging at high resolution with AFM. The fact that the vast
majority of deposited crystallites were of similar size and morphology and that these other
minor constituents of larger size were present at much lower concentration suggests that
template-assisted deposition may be used to deposit crystalline materials with very narrow
particle size distributions.
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Figure 4. High resolution atomic force micrograph showing the crystalline lattice of CdS
deposited on a 3 layer LB film. See Table 1 for deposition conditions (3-LB). A. Unfiltered image
of the CdS lattice obtained by high resolution imaging of a crystallite such as the one shown in
Fig. 3C. B. The image of the CdS crystalline lattice (same area shown in 4A) after filtering by a
2D Fourier transform filtering routine.
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Figure 5. Atomic force
micrographs of other features
observed of material
deposited on the 3 layer LB
film. A. A crystalline feature
similar in size to that in Fig.
3C. B. Change in the
structure of the feature shown
in 5A after prolonged
scanning under AFM. This
micrograph shows that the
AFM can affect the structure
of the crystallites. In this
case, AFM resulted in the
removal of layers of the
crystalline material (compare
Figs. 5A and 5B). C.
Structure of a minor
constituent produced in the 3-
LB depositions. In contrast to
the structure of crystallites
observed as the major
constituent of the deposited
material (see for example
Fig. 3C and Figs. 5A and
5B), these structures
(typically much larger than
the crystallites constituting
the major component) were
observed only infrequently;
less than one percent of the
deposited features exhibited
this structure.
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In order to further examine the hypothesis that the carboxylate groups on the
surface of the 3-LB samples were indeed participating in template-assisted deposition, we
performed an experiment (4-LB) which used deposition conditions similar to those used
for the 3-LB experiments, with the exception that the charged electrode was covered with a
four layer LB film. The outer surface (interfacing with the deposition solution) of this LB
film is terminated in hydrophobic methyl groups. Under the conditions (voltage cycle,
deposition time) used for the 3-LB depositions, no easily detectable amounts of material
were formed, either on the LB film or on the SAM. Only after the amplitude of the voltage
cycle (+ 1.75 V) and the deposition time (5 min) were increased, did detectable amounts of
material become deposited. Figure 6 shows an optical micrograph of the boundary region
between the LB film and the SAM underlayer of such a sample after it had been subjected
to the 4-LB conditions. It is clear that under similar deposition conditions to those used in
the 3-LB experiment, an LB film terminated with hydrophobic methyl groups (4-LB)
inhibited the crystallization of CdS. On the areas of the electrode covered with only the
SAM, only sparse amounts of material were deposited, presumably at defect sites. These
results when taken together with those presented above, strongly suggest a nucleation or
deposition mechanism that is mediated by the carboxylate or carboxylic groups on the
surface of the 3 layer LB films.

L
B

100 µm

Figure 6. An optical micrograph of a portion of a 4 layer LB film (terminated in methyl
groups) and a portion of a SAM after they had been subjected to conditions that produced
deposition of crystalline CdS particles on 3 layer LB films. See Table 1 for deposition
conditions (4-LB).  
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3.3. Conformal CdS Thin Films Produced By Template-Assisted Electrochemical
Deposition.

The final deposition conditions investigated used information gained in previous
experiments to obtain uniform thin films of CdS by template-assisted electrochemical
deposition.  5-layer LB films terminated in cadmium carboxylate groups were fabricated
and used as templating surfaces. 5-layer LB films are thought to be, in general, more
ordered on a molecular level than three layer films,[17] and our aim was to obtain as
uniform a templating surface as possible in order to enhance uniform nucleation and
crystallization of CdS.[18] The dipping conditions for forming the LB films (concentration
of Cd2+, pH) were also adjusted to values known to produce more ordered LB films (see
Experimental section). Furthermore the LB films (formed on a SAM-modified Au film)
were deposited onto gold electrodes that were now used as the ground electrodes in the
deposition cell. A bare platinum electrode was used as the charged electrode so that
reduction of S to S2- proceeded unhindered by a dielectric SAM or LB layer. Figure 1B
gives the schematic of the deposition setup for the 5-LB depositions (see also Table 1).

Figure 7 shows that, by making these changes, we were able to fabricate conformal
thin films of CdS by template-assisted electrochemical deposition at relatively high
deposition rates on the LB films. Furthermore, these deposition conditions (summarized in
Table 1) produced a high level of reproducibility in making these thin films. Figures 7A
and 7B show optical and atomic force micrographs, respectively, of the boundary region
between the LB film-covered area of the electrode and the area of the electrode that was
modified with only a SAM. These micrographs indicate that the amount of material
deposited was much greater on the 5 layer LB film than on the hydrophobic SAM and, that
uniform conformal thin films were deposited on the 5 layer LB films. EDAX suggested
that the material that was deposited on the LB film was CdS, in that Cd and S were
detected while no other elements (Na, Cl, O, N) from ions in the deposition solution were
detected.  AFM measurements (height mode, data not shown) of this boundary region
indicated that the average thickness of the deposited film was ~40 nm.

Although the fact that the deposited material (presumably CdS) was restricted
primarily to the LB film area suggested a template-mediated deposition mechanism, the
morphology (particle shape and surface features, see Figure 7C) of the material was
different from that of the crystalline CdS deposited in the 3-LB depositions. Furthermore,
we were not able to obtain an image of the crystal structure of the surface with AFM as we
did for the 3-LB sample. We are currently investigating further the possible structure and
the deposition mechanism of the CdS thin films obtained under the 5-LB deposition
conditions. One possibility is that the higher S2- concentration produced in the 5-LB
depositions favored homogeneous nucleation of CdS and the deposited film is composed,
at least in part, of crystallites nucleated in solution. These crystallites, perhaps deposited by
a physical adsorption mechanism, would be less likely to have uniform crystallographic
orientations than crystallites that nucleated on the underlying, ordered LB film.
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Figure 7. Optical and
atomic force micrographs
of a uniform thin film (~40
nm in thickness) of CdS
deposited by template-
assisted electrochemical
deposition onto a 5 layer
LB film. See Table 1 for
deposition conditions (5-
LB). A. Optical
micrograph of a region
showing CdS deposition
on LB-modified areas of
the sample, and SAM-
modified areas of the
sample. CdS deposition
was generally restricted to
the surface of the LB film.
B. An atomic force
micrograph (force mode
imaging) of a region
similar to that shown in
Fig. 7A. C. An atomic
force micrograph (force
mode imaging, higher
magnification than 7B) of
the surface of the CdS film
formed on the 5 layer LB
film.
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4. Conclusions

We have devised a method for template-assisted electrochemical deposition of CdS
that produced adherent, conformal thin films with relatively fast deposition rates when
compared to other solution precipitation methods. The methods described may form a route
to the deposition of crystalline, uniform, thin CdS films that exhibit crystallographic
orientations that are dictated by an underlying organic template where nucleation occurs.

Work is ongoing in our group to examine the mechanisms of deposition for the
formation of such films. Emphasis in this work includes the investigation of possible
cooperative assembly between the LB templates and the nucleated CdS crystals, and the
effects of electric fields on the crystallization process. In addition, we are continuing to
characterize the structures of CdS films deposited in this manner. Current efforts include
analysis by transmission electron microscopy, X-ray diffraction and atomic force
microscopy.
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APPENDIX  C

Characterization of Langmuir - Blodgett Films Using X-ray Reflectivity

J. Cesarano, D. Chen, M. Kent, D. Fein

Materials and Process Science Center
Sandia National Laboratories

SUMMARY

X-ray reflectivity is a technique that measures the intensity of scattered x-rays
that have been reflected from a surface at very small angles.  This technique is very
useful for determining the detailed structure of thin molecular films.  However, there are
limitations of this technique:  1) the structural information that is gleaned from this
technique is primarily for structure throughout the thickness of the films.  That is, the
out-of-plane structure that is perpendicular to the substrate;  2)  the structural information
yields averaged information for the entire analysis area; and 3)  The film structure does
not come directly from the reflectivity data.  An end user must guess what the actual
structure may be and then use a model to calculate a reflectivity curve.  If the calculated
values fit the experimental data then it is assumed that the guessed structure is the actual
structure.  This may not be totally satisfying in that you may never be absolutely certain
that there is a unique structural solution.  However, in reality, the probability of having
several solutions to one reflectivity curve is very low.  In order to fit a reflectivity curve,
four parameters must be used for each uniform layer within the structure and calculated
curves vary greatly as each parameter is varied.  The variables are thickness, roughness,
and two parameters related to how the layer scatters x-rays.

The work described below is for the study of Langmuir Blodgett (LB) films of
Cd-arachidate on silicon wafers.  Cd-arachidate films up to 10 layers were analyzed.  The
structure of the LB films is actually comprised of several layered components.  The
silicon wafers have a native oxide layer that is 15Å thick.  The native oxide is then
rendered hydrophobic by chemically attaching a self assembled monolayer of
octadecyltrichlorosilane.  The Cd-arachidate LB films are then applied.  For detailed
analysis, each layer within the structure must be analyzed sequentially.  The structure of
the 15Å thick native silicon oxide had to be determined first.  Then, the oxide/silane
together and then the oxide/silane/LB structures.  Details of this work are presented in
the tables and Figures below.  The main contribution of this work is that it was
determined that knowing the scattering information for a single molecular species was
not enough to fit the reflectivity data.  Individual segments within molecules had to be
accounted for.  With that completed, relatively good fits were obtained and detailed
information for the out-of-plane structure of Cd-arachidate on silicon was derived.  In
order to obtain a detailed model of the LB film, including in-plane structure, x-ray
reflectivity should be coupled with other characterization techniques.
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X-ray ReflectivityX-ray Reflectivity

• Detects the variation in the electron density of 
the specimen

• Has excellent resolution (~1nm)
• Is non-destructive
• Is ideal for use with thin samples such as 

Langmuir-Blodgett films
• The main drawback is that fitting the data is a 

lengthy process

1
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LabWindows
Automated Code
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Calculating ReflectivityCalculating Reflectivity

kz,i = (kz,0
2 - 4špi)1/2

• In vacuum, the z component of the wavevector 
is given by:

•

•
•

• In a medium i, it is given by:

kz,0 = ( 2š ) sin = Q/2

3

Reflectivity of a Simple Uniform FilmReflectivity of a Simple Uniform Film

• The reflectance is given by:
•

•
•
• And the reflectivity is given by:

ri,i+1 = (kz,i - kz,i+1)/(kz,i + kz,i+1)

R(kz,0) = 
r0,1

2+r1,2
2 + 2r0,1r1,2 cos(2kz,1d)

1 + r0,1
2r1,2

2 + 2r0,1r1,2 cos(2kz,1d)

4
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Diagram of X-ray PathDiagram of X-ray Path
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5

For Multiple Layer ReflectivityFor Multiple Layer Reflectivity

n=1-Ž+iß

n = Refractive index

n1cos = n2cos
1 2

6

• The x-ray is refracted, so the incident angle is 
different for lower layers.

• Using Snell’s Law:
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Calculation of Ž and ßCalculation of Ž and ß

ß = µ
4š µ = the mass absorption coefficient

Ž = 
2
pel r0

2š

= the wavelength of incident radiation
pel = the electron density
r0 = the classical electron radius

7

8

Roughness

• Roughness on a surface effectively makes the 
incident angle variable.  This is accounted for 
in the theoretical calculations. 

ΘΘΘΘ
ΘΘ

1
2

3
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Experimantal

Preparation of Substrate(Silanation)
1) Rinse off substrate with Ethanol and DI water
2) Blow substrate dry
3) Rinse out Silanation bottles with Ethanol
4) Plasma clean substrate in Technics MICRO PD series 900 Plasma Cleaner

a) Plasma clean for about 10 to 15 min
b) Keep at 0.250 torr and about 40 watts

5) Transfer substrate and all materials into (N2)dry box
6) Using syringes, transfer 20ml of hexadecane into each bottle
7) Add 8µl of Octadecyltrichlorosilane(OTS) to one of the bottles

(concentration of OTS should be 1mM)
8) Transfer the substrate into the bottle with the silane-hexadecane mixture

(substrate must be submerged in solution)
9) Let the reaction take place for approximately 2-4 hours
10) After the desired reaction time, transfer the substrate from the reaction mixture to the vial containing
only hexadecane
11) Transfer everything out of the dry box
12) Take the sample out of the vial and rinse with Chloroform, Ethanol, and DI water.  Scrub with a
swab soaked in chloroform if necessary
13) Blow off sample with N2 of Ar, and store in fluoroware or plastic box
14) Dispose of waste properly

Preparation of Flask that will contain subphase(Piranha Cleaning)
1) Wear full protective clothing(long rubber apron, face mask, appropriate gloves, long pants, and shoes
2) Carefully pour 4 volumes of Sulfuric Acid into the flask
3) Slowly pour 1 volume of 30% concentrated Hydrogen Peroxide into the acid
4) While pouring the H2O2, gas bubbles should start to form.  BE CAREFUL!  This reaction is very
exothermic.  Be careful when you place the cap on the flask.  Do not keep the cap on for a long period of
time.  The gas that is formed must be allowed to exit the bottle.  Failure to remove the cap fast enough
may result in the bottle exploding due to gas pressure
5) Place the cap on, shake the bottle, and quickly remove the cap.  Repeat this for at least 15 minutes.
The reaction will slow down after a while, becoming less exothermic.
6) Pour the "Pirhana solution" into the appropriate waste bottle
7) Rinse the bottle with DI water straight from the faucet for at least 5 minutes
8) The bottle is clean when the bubbles that form from shaking the bottle disappear from the water.  If the
bubbles stay on the surface, then the bottle still contains organic ontaminants.  The bottle can be used for
the next 6 months without recleaning

Preparation of Subphase
1) Rinse out 2000ml flask with DI water straight from faucet

2) Measure out 0.1800g of CdCl2(for a Cadmium concentration of 5x10-4M)and place in the empty flask
3) Fill the flask to the top(2000ml) with DI water
4) Shake until the CdCl2 is dissolved and mixed thoroughly
5) Take pH of mixture
6) Adjust pH by adding 0.1M NaHCO3 until the pH is about 6.50
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Using the Nima Langmuir-Blodgett Trough
Preparation of the Trough
1) The surface of the trough, and all the parts of the trough which will be in contact with 

the subphase should be wiped with a Kimwipe soaked in isopropanol(wearing 
polyethylene gloves)

2) The trough should now be wiped with a Kimwipe soaked in DI water
3) The barriers should be attached, with the end of the barrier touching the outside edge 

of the trough
4) The pressure sensor is then attached.  Take an "S" hook, and hook it to the pressure 

sensor wire.  Attach the long copper colored wire to the other end, and attach 
another "S" hook to the other end of the copper wire.  Then attach the Wilhelmy 
plate to the other end of the "S" hook

5) The subphase should then be poured into the trough.  The surface of the subphase 
should be about 1-2mm over the top of the edge of the trough

Cleaning the Subphase
1) Before the Wilhelmy plate is lowered into the subphase, the surface should be cleaned

a) Turn on the aspirator pump
b) Put the pipette head at the surface of the subphase to suck off any floating 
material
c) Move the pipette around to cover the whole area between the barriers

2) Lower the Wilhelmy plate completely into the subphase and let it sit for a few minutes
3) Make sure the barriers are fully opened, and position the pressure sensor so that about 

two-thirds of it is submerged in the subphase
4) Zero the pressure sensor(press the [Z] button)
5) Lift the pressure sensor out of the subphase.  The pressure should change about 

70mN/m( the exact value for pure water in an atmosphere of saturated water 
vapor at 293K is 72.8mN/m)

6) Reposition and rezero the sensor
7) Press the [ENTER] button to start the isotherm.  The isotherm should be constant 

except for a small peak at the end, caused by contaminants on the subphase 
surface

8) Suck off the surface of the subphase again, and open the barriers
9) Repeat steps 8 and 7 and 8 until the pressure(¹a) is less than 0.5mN/m when the 

barriers are closed
10) If the subphase level is too low, pour more in until the level is high enough
11) Check the pressure again
12) Open the barriers completely
Spreading the Monolayer
1) Rinse out a 100µl syringe with chloroform about 3 times
2) Get about 100µl of Arachidic Acid in Chloroform(2mM ~ 25mg/40ml)
3) Hold the syringe tip about 5-10 mm from the surface of the subphase
4) Place one drop of the Arachidic Acid on the surface of the subphase
5) Wait for the drop to completely disappear, and repeat until all 100µl are deposited on 

the surface
6) Repeat steps 2 through 5 until about 300µl of the Arachidic Acid solution is deposited 

on the surface
7) Let the chloroform evaporate for at least 15 minutes.
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Dipping the Sample
1) Place the substrate in the holder, and place the holder on the trough
2) Lower the substrate until it is very close to the surface of the subphase

a) Press [D] to move the dipper
b) Press [D] again to tell the dipper to go down
c) Let the dipper lower
d)Press [SPACE BAR] to stop the dipper

3) Program the dipper
a) Press [M] to go to the menu
b) Program dipping conditions

1: Press [D] to go to the dipper menu
2: Press [A] to set the area of the substrate
3: Press [N] to set the number of layers to be dipped
4: Press [T] to set the target pressure (28mN/m)
5: Press [D] to set the dipping speed (1.6mm/min)
6: Press [W] to set the dipper wait (Use ~60s)

A) This tells the dipper what duration to wait between each bilayer 
B) If no wait is desired, leave it at 0s

7: Set dipper start and end
A) Press [E] to switch from enter to teach mode
B) Press [1], and the location of the dipper currently will appear

1- Press [SPACE BAR]
2- Press [Y] to log the position as the start position

C) Press [E] to switch back to enter mode
D) Press [2] and enter the end position

8: Press [Q] to exit dipping menu
c) Program operating conditions

1: Press [V] and enter the volume of Arachidic Acid solution used
2: Press [B] to change barrier speed
3: Add any comments
4: Press [Q] to exit the operating conditions menu

d) Press [Q] to return to the isotherm
4) Cover the trough opening with the plastic sheet
5) Zero the pressure sensor(Press [Z])
6) Press [ENTER] to start the compression of the monolayer
7) When the pressure is close to the target pressure, hit [SPACE BAR]
8) Press [P] to turn on the pressure control, and press [ENTER] to compress the barriers
9) When the target pressure is reached, hit [D] to begin the dipping program
10) When the dipping is done, raise the dipper all the way
11) Remove the holder, and remove the sample.  Place the sample in a plastic sample box
12) Press [S] to save data

Emptying the Trough
1) Open the barriers completely (Press [O])
2) Plug in the aspirator pump
3) Suck off the surface of the subphase
4) Press [E] to begin easy clean

a) The barriers will compress to the target pressure, and the
5) Suck out all the subphase
6) Remove the pressure sensor, and the barriers
7) Wipe the surface with kimwipes soaked in isopropanol and DI water
8) Put on trough cover and close doors
9) Press [Q] to quit the trough program
10) Turn off the computer and the trough
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Sample conditions for figures
Fig. 9 Si/SiO2 15Å
Rinsed with Ethanol and DI water
Plasma Cleaned
Substrate dimensions = 1'x1'

Fig. 10 Si/SiO2 15Å with 1 layer of Octadecyltrichlorosilane
Rinsed with Ethanol and DI water
Plasma Cleaned
Silanated in  25ml of hexadecane and 10µl of OTS for 4 hours
Scrubbed with a swab soaked in Chloroform
Rinsed with Chloroform, Ethanol, and DI water
Substrate dimensions = 1'x1'

Fig. 11 Si/SiO2 15Å with 1 layer of OTS and a 2 layer LB film of cadmium arachidate
Rinsed with Ethanol and DI water
Plasma Cleaned
Silanated in 20ml of hexadecane and 8µl of OTS for 4 hours
Scrubbed with a swab soaked in Chloroform
Rinsed with Chloroform, Ethanol, and DI water
Dipped diagonally using alligator clip holding the corner
Subphase conditions - 0.180g CdCl2, adding ~1.5ml of

  0.1M NaHCO3 pH = 6.49 [Cd++] = 5x10-4M
Dipper speed = 1.6 mm/min
Target pressure = 28mN/m

Barrier Speed = 50cm2/min
285µl of Arachidic Acid/Chloroform solution(2mM) deposited on surface
Dipper wait = 0 seconds
Dipper start position = 24.6mm
Dipper end position = 55.0mm
Length of film ~ 30.0mm
Substrate dimensions = 1'x1'

Fig. 13 Si/SiO2 15Å with 1 layer of OTS and a 10 layer LB film of Cd-arachidate
Rinsed with Ethanol and DI water
Plasma leaned
Silanated in 30ml of hexadecane and 12µl of OTS for 4 hours
Scrubbed with a swab soaked in Chloroform
Rinsed with Chloroform, Ethanol, and DI water
Subphase conditions - 0.180g CdCl2, adding ~1.5ml of

  0.1M NaHCO3 pH = 6.53 [Cd++] = 5x10-4M
Dipper speed = 1.6 mm/min
Target pressure = 28mN/m

Barrier Speed = 50cm2/min
285µl of Arachidic Acid/Chloroform solution(2mM) deposited on surface
Dipper wait = 60 seconds
Dipper start position = 40mm
Dipper end position = 74mm
Length of film ~ 34mm
Substrate dimensions = 1'x1.5'
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Figure 9:  Reflectivity data and fit show that the native oxide layer on our silicon wafers is 15Å thick
with a roughness of 4Å.  A roughness value 4Å was necessary to obtain a good fit with the experimaental data
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Figure 10:  This reflectivity data and fit show that the OTS monolayer is conformal to the substrate
with a roughness of 5Å.  Also, this fit shows that OTS molecules need to be anaylzed as three entities.
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Figure 11:  Reflectivity for one LB bilayer of Cd-arachidate.  The fit is reasonable and shows that
the bilayer is tilted about 15 degrees (see Figure 12).  However the calculated structure shows
more detail than the actual structure and implies that the bilayer is not as ordered as depicted in Figure 12
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Si

SiO2

• Hydrocarbon tail 
CH3-(CH2)19

• Head groups COO-
Cd-OOC

• Hydrocarbon tail 
CH3-(CH2)18 

• OTS tail           CH3-
(CH2)17

• OTS head SiCl3 

{

Arachidic Acid molecules are tilted at approximately 15°

Figure 12:  A schematic of the structure that was used to fit the data in Fig. 11.  This fit shows that the Cd head group
region must be treated separately from the rest of the bilayer.  Also, the length of the hydrocarbon tails used to fit the
data (24.1 Å) implies that the tails are actually tilted approximately 15 degrees from vertical.
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Figure 13:  Reflectivity from 5 bilayers of Cd-arachidate.  The actual structure does not have the very fine detail of
the fitted model structure (see Fig. 14).  However, the fit and hydrocarbon tail length, imply that the LB structure is
a rigid crystalline structure that is not tilted.  This may explain why 5 layer Cd-arachidate films provided better
templating for CdS growth than the 3 layer Cd-arachidate films discussed in Appendix B.
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Figure 14:  A schematic of the structure used to fit the reflectivity data in Fig. 13.  The structure is not tilted with
a bilayer thickness that is comparable to crystalline Cd-arachidate.  The expected bilayer thickness for Cd-arachidate
is approximateky 56Å.  Bilayers #1-4 yield a thickness of 55.6Å +/- 1Å.  Bilayer #5 yields a thickness of 58.6Å +/- 4Å
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